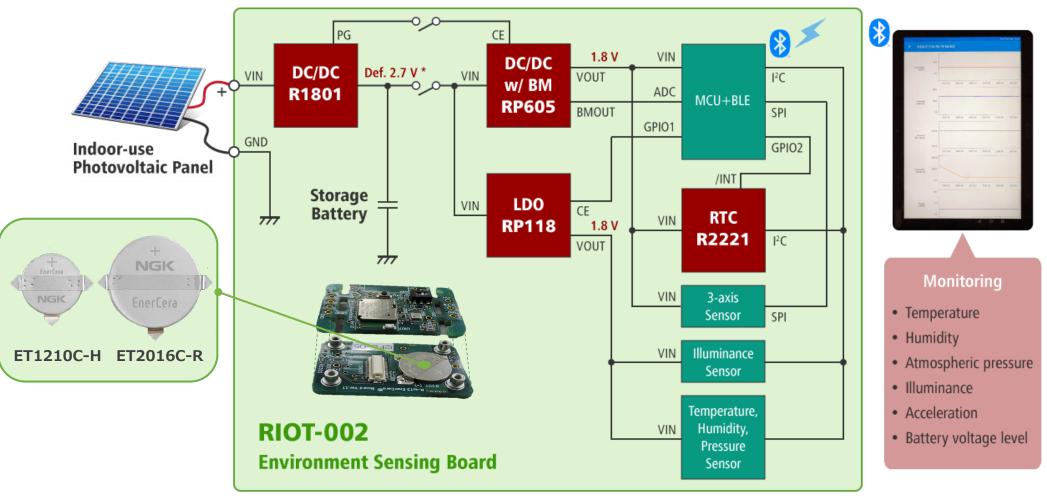

メンテナンスフリー環境センサー with EnerCera

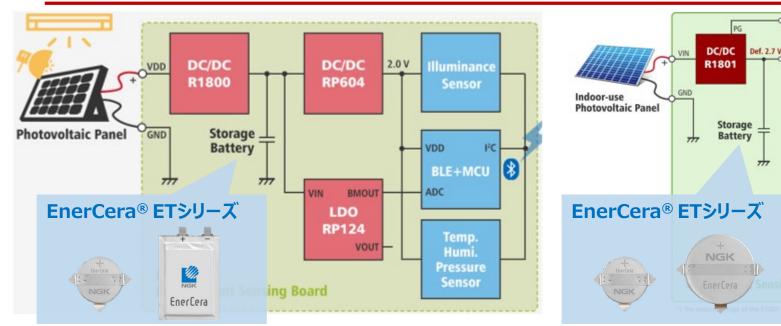
メンテナンスフリー環境センサーデモ機 RIOT-001+EnerCera®

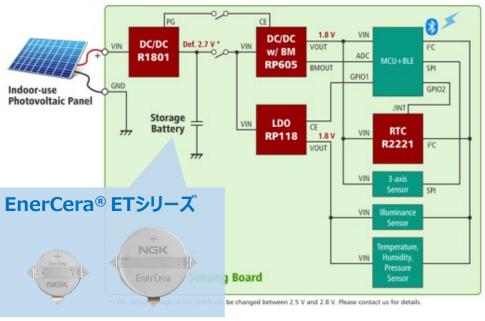


- 屋内用太陽電池から二次電池に充電
- 高効率で稼働
- 低消費なバッテリーモニタ機能
- ✔ メンテナンスフリーを実現

メンテナンスフリー環境センサーデモ機 RIOT-002+EnerCera®

*) The output voltage of the R1801 can be changed between 2.5 V and 2.8 V. Please contact us for details.


環境センサーボード「RIOT-002」は、温度・湿度・大気圧・照度・加速度がモニターできるボードです。Bluetooth Low Energy (BLE) を使って送信される情報は、専用のアプリをインストールしたスマートフォンやタブレット端末に表示することができます。 また、専用のアプリから間欠動作間隔、稼働曜日、稼働開始・終了時間を任意に設定することが可能です。


https://www.nisshinbo-microdevices.co.jp/ja/applications/iot-module/environment-sensor/riot-002.html

メンテナンスフリー環境センサーデモ機 RIOT-001,2+EnerCera® NSSHNBO

メンテナンスフリー環境センサーのようなIoT端末にアシストできる製品群をご用意しております. 用途や目的に応じて電源製品をご選択ください.

エナジーハーベスト用 DCDC

PN	Туре	Photovoltaic
R1800	Buck	⊚ Multi-cell
R1801	Buck	⊚ Multi-cell
R1810	Boost	© 1cell

超低消費 PMIC

PN	Туре	PN	Туре	
RP118	. 18 LDO RP124		LDO+BM	
RP511 RP512 Buck		RP514 RP515	Buck+BM	
RP516 RP517		RP605	Buck/Boost +BM	
RP604	Buck/Boost			

低ノイズ LDO

PN	
RP122 RP123	

エナジーハーベストA DCDC

PN	Туре	Photovoltaic	Vibration w/ ACDC	Operating Voltage	MPPC internally fixed	Vset	Iq
R1800	Buck	© Multi-cell	0	2.0~5.5V	2.0~5.3V 0.1V step	2.0~4.5V 0.1V step	144nA
R1801	Buck	⊚ Multi-cell	0	2.2~5.5V	2.2~5.3V External	2.2~4.5V adjusting	200nA
R1810	Boost	© 1cell	\circ	0.35~2.1V	0.2 ~2.1V 50mV step	2.0~4.5V 0.1V step	600nA

超低消費 PMIC

	PN	Туре	Iq	Iout	Vin	Vout
_	RP118	LDO	0.2uA	100mA	1.7V-5.5V	1.2V-3.6V
	RP511 RP512	Buck	0.3uA	0.3uA 100mA 2.0V-5.5V		1.0V-4.0V
•	RP516 RP517	Buck	0.3uA	100mA 300mA	1.8V-5.5V	0.3V-1.2V
	RP604	Buck/Boost	0.3uA	300mA(Buck)	1.8V-5.5V	1.6V-5.2V
४४ RP124		LDO+BM	0.2uA + 0.1uA	100mA	1.7V-5.5V	LDO: 1.2V-3.6V BM: 1/3, 1/4
ッテリーモニター	RP514 RP515	Buck+BM	0.3uA + 0.1uA	100mA 300mA	1.8V-5.5V	Buck : 1.0V-4.0V BM : 1/3, 1/4
w"//+	RP605	Buck/Boost +BM	0.3uA + 0.1uA	300mA(Buck)	1.8V-5.5V	1.6V-5.2V BM: 1/3, 1/4

PN	Iq	Iout	en	PSRR (1k, 100kHz)	Vin	Vout
RP122 RP123	10uA	400mA 250mA	8uVrms	90dB, 65dB	1.9V-5.5V	1.2V-4.8V

微小発電/エナジーハーベスト/メンテナンスフリーIoT端末に貢献する技術ポイント

エナジーハーベスト用DCDC

■ Point

薄暗い所/明るさを確保し辛い所でも、太陽電池を利用したい。

"起動電力の低さ"で解決。 低照度のような発電環境の低い所 でも、エナジーハーベスト動作/ 効率的な電力の取り出しが可能に。

	R1800	R1801	R1810
対応可能 太陽電池(屋内用)	Multi-cell	Multi-cell	1-2cell
動作消費電流	144nA	200nA	600nA
	0.72μW	1µW	9μW
必要起動電力	@Vin 4.0V	@Vin 4.0V	@Vin 0.5V,
	Vset 3.3V	Vset 3.0V	Vset 2.6V

┗⋙ <u>16 LX</u>で蓄電可能※ (動画をチェック下さい)

※屋内用太陽電池 AM1801 (パナソニック ソーラー アモルトン社製) 使用時 https://youtu.be/n1IxQQVrGNw

エナジーハーベスト用DCDC

■ Point

"最大電力点制御"で解決。 最大出力電力点で 太陽電池を動作させることで、 効率的な蓄電が可能に。

最大電力点制御 (MPPC)・・・光発電素子の最大出力電力点で、DC/DCスイッチング動作をさせる制御 ・光発電素子の電流電圧特性と電力カーブ ・コンバータの入出力電圧 MPPC設定電圧 3 電流 (A)電力 (W) 出力電流(A) 出力電力(W) MPPC動作開始電圧 **^** VIN 時間(sec) VOUT 時間(sec) 出力電圧(V) 低消費・小型化を実現しつつ、発電素子の電力量を最大限引き出す制御方式

微小発電/エナジーハーベスト/メンテナンスフリーIoT端末に貢献する<u>技術ポ</u>イント

エナジーハーベスト用DCDC

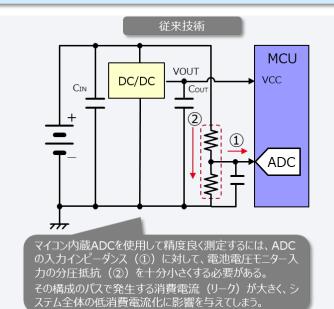
■ Point

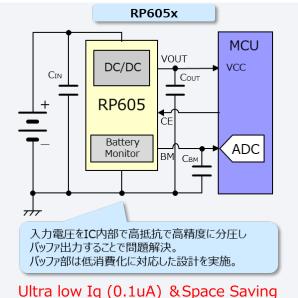
消灯などによって太陽電池が 未発電状態になった時、 蓄電池側からの逆流が気になる。

"逆流防止機能"で解決。 逆流防止機能搭載により、 蓄電した電力をムダにしない。

逆流防止機能ONにより光遮断時の逆流を阻止⇒ Cout に蓄えた電荷を保持 R1800K 光遮断、逆流状態発生 Photovoltaic $(V_{IN} < V_{OUT})$ Iref 逆流状態検知 逆流防止機能ON Buffer Logic ≨ AGND On time generator Protection TES T1 TES T2 光回復、蓄電状態復帰 AGND. V_{TN} ≥ 2V時 逆流防止が機能 逆流防止機能OFF

逆流防止機能により、未発電状態での蓄電池側からの逆流による電力消費を防止

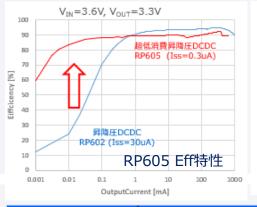

超低消費PMIC

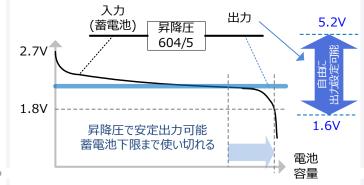

■ Point

蓄電レベルを把握し続けたいが、 測定精度×低消費×省スペース のバランス設計が大変。

"バッテリーモニターアシスト機能"で解決。 入力電圧を低消費(0.1uA)で 高精度に分圧バッファ出力する。 部品数も削減して省スペース化 にも貢献する。

微小発電/エナジーハーベスト/メンテナンスフリーIoT端末に貢献する技術ポイント

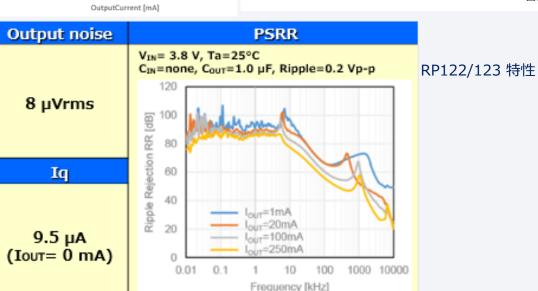

超低消費PMIC


■ Point

大切な蓄電エネルギーを効率良く使いたい。 □

"0.5uA未満の動作消費電流"で解決。 超低消費性能で高効率を実現する。 更に昇降圧製品であれば、蓄電レベルが 低下しても、後段への安定駆動電圧供給 が可能となり、回路システム設計も安心。

	RP118	RP511/2 RP516/7	RP604	RP124	RP514/5	RP605
Type	LDO	Buck	Buck/Boost	LDO+BM	Buck+BM	B/B+BM
消費電流	0.2uA	0.3uA	0.3uA	0.2uA +0.1uA	0.3uA +0.1uA	0.3uA +0.1A

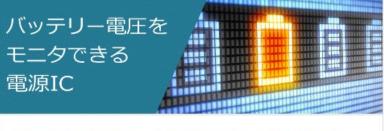

低ノイズLDO

■ Point

大切な蓄電エネルギーを効率良く 使いたい。またセンサーの高精度化 も実現したい。

高RR/低ノイズ出力&低消費を 高次元で両立する低ノイズLDO群 で課題を解決。

電池寿命に 貢献する電源IC


ナノオーダの低消費電流で電池の長寿命化を実現

低出力雑音・高リップル除去率・高速応答特性と低消費電流 > を両立

低起電力電源ICで照度が低い環境下でも効率的に電力の取り 出しが可能に

電池電圧モニタ機能で、IoT機器の省スペースやバッテリー の長寿命・長時間駆動を実現。電池交換工数の削減にも貢献

https://www.nisshinbo-microdevices.co.jp/ja/applications/iot/

